Abstract

Several approximate algorithms have been reported to solve large constraint-satisfaction problems (CSPs) within a practical time. While those papers discuss techniques to escape from local optima, this paper describes a method that actively performs global searches. The present method improves the rate of search of genetic algorithms by using viral infection instead of mutation. Partial solutions of a CSP are considered to be viruses, and a population of viruses is created, as well as a population of candidate solutions. The search for a solution is conducted by crossover and infection. Infection substitutes the gene of a virus for the locus decided by the virus. Experimental results using randomly generated CSPs prove that the proposed method is faster that usual genetic algorithms at finding a solution when the constraint density of a CSP is low.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.