Abstract

This paper proposes two constraint-handling techniques based on multiobjective optimization with biased dynamic weights for constrained optimization problems (COPs). Transforming a COP into an unconstrained biobjective optimization, two popular strategies based on decomposition, i.e. Tchebycheff approach (TEA) and weighted sum approach (WSA) are used in this paper respectively. In order to keep a good balance between convergence and diversity of the population, this paper uses the weights, which are designed with bias and change dynamically as the generation increases, to select different individuals with smaller objective values and lower degree of constraint violations. Furthermore, 13 benchmark test functions are used to investigate the effectiveness of TEA and WSA. Experimental results demonstrate that TEA not only works better than WSA, but also is superior to the compared algorithms, i.e. MDPE, GDE and SR in terms of reliability and stabilization of converging to a global solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.