Abstract

The purpose of this paper is to introduce and study a new class of combinatorial optimization problems in which the objective function is the algebraic sum of a bottleneck cost function (Min-Max) and a linear cost function (Min-Sum). General algorithms for solving such problems are described and general complexity results are derived. A number of examples of application involving matchings, paths and cutsets, matroid bases, and matroid intersection problems are examined, and the general complexity results are specialized to each of them. The interest of these various problems comes in particular from their strong relation to other important and difficult combinatorial problems such as: weighted edge coloring of a graph; optimum weighted covering with matroid bases; optimum weighted partitioning with matroid intersections, etc. Another important area of application of the algorithms given in the paper is bicriterion analysis involving a Min-Max criterion and a Min-Sum one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.