Abstract
Various applications in reliability and risk management give rise to optimization prob- lems with constraints involving random parameters, which are required to be satisfied with a prespecified probability threshold. There are two main difficulties with such chance-constrained problems. First, checking feasibility of a given candidate solution exactly is, in general, impossible because this requires evaluating quantiles of random functions. Second, the feasible region induced by chance constraints is, in general, nonconvex, leading to severe optimization challenges. In this tutorial, we discuss an approach based on solving approximating problems using Monte Carlo samples of the random data. This scheme can be used to yield both feasible solutions and statistical optimality bounds with high confidence using modest sample sizes. The approximat- ing problem is itself a chance-constrained problem, albeit with a finite distribution of modest support, and is an NP-hard combinatorial optimization problem. We adopt integer-programming-based methods for its solution. In particular, we discuss a fam- ily valid inequalities for a integer programming formulations for a special but large class of chance-constrained problems that have demonstrated significant computa- tional advantages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.