Abstract

The present article is concerned with the numerical solution of a free boundary problem for an elliptic state equation with nonconstant coefficients. We maximize the Dirichlet energy functional over all domains of fixed volume. The domain under consideration is represented by a level set function, which is driven by the objective's shape gradient. The state is computed by the finite element method where the underlying triangulation is constructed by means of a marching cubes algorithm. We show that the combination of these tools lead to an efficient solver for general shape optimization problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call