Abstract
A dynamic explicit finite element solver is developed for numerical simulation of metal ring rolling process, which is a complex process of material nonlinearity, geometric nonlinearity and contact nonlinearity. An elastro-plastic dynamic explicit finite element equation and central difference algorithm are used. To control hourglass, a stable matrix hourglass control method is used to ensure energy balance in the simulation. Two-step method of global search and local search is used to reduce the contact judging time. In the elastic-plastic stress updating, tangent forecasting and radical return algorithm are used to eliminate the stress deviate from the yield surface. The accuracy and stability of the solver is verified by comparison of two ring rolling processes with the experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.