Abstract

A study has been undertaken to investigate different solver and shell element performances for curved bridge finite-element analysis. Three sparse solvers were implemented into a bridge finite-element analysis code, and the solution times and memory requirements for typical bridges were compared. In addition, the use of four-node and nine-node shell elements in modeling was investigated for different mesh densities. Based on the comparative studies performed, modeling guidelines for practicing engineers have been developed and are presented herein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.