Abstract

A clostridial bacterium is accepted to be one of the important and efficient microorganisms for the application in fuel fermentation process. However, the lack of cellulolytic activity of cellulosome in this organism appears to be one of the main important problems for efficient production of the fuel. It is therefore interesting to search for the genetic resource of natural clostridial bacteria for the application in bioengineering. Presently, Clostridium species selection and identification are based on various physiological properties tests. This article developed the way for a 4-step screening process via mainly three criteria and 16S rDNA identification. In this study, solvent-producing clostridial bacteria were successfully isolated from decomposed sources, cow feaces, and dry grass in Thailand. Anaerobes were screened by cellulolytic activity and butanol tolerance in selective media that composed of basal media supplemented with 2% cellulose and 5% butanol. Thirty isolates of cellulolytic and butanol-tolerant anaerobic bacteria were obtained from screening in this medium. Fifteen isolates were rapidly classified as in the class Clostridia by three selected criteria (endospore formation, sulfite-reducing ability, and metabolic products). Secondary metabolites of the bacteria such as acetone, butanol and ethanol were varied depending on the process. Clostridial differential medium was used as a genus identification tool. Finally, PCR-amplified gene fragments coding for 16S rDNA were analyzed as a key to identify bacteria species. This process can be used to screen and identify Clostridium species in short period. Cellulosome and non-cellulosome cellulases productivity were analyzed. The results revealed that the selected cellulolytic strains (such as Fea-PA) exhibited EngD non-cellulosome cellulase activity especially endoglucanase activity on carboxymethyl cellulose. The selective system in this research was appropriate for the screening of Clostridiaceae in a similarity range between 83% and 100%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call