Abstract

Metal-organic frameworks (MOFs) have gained considerable attention as hybrid materials-in part because of a multitude of potential useful applications, ranging from gas separation to catalysis and light harvesting. Unfortunately, de novo synthesis of MOFs with desirable function-property combinations is not always reliable and may suffer from vagaries such as formation of undesirable topologies, low solubility of precursors, and loss of functionality of the sensitive network components. The recently discovered synthetic approach coined solvent-assisted linker exchange (SALE) constitutes a simple to implement strategy for circumventing these setbacks; its use has already led to the generation of a variety of MOF materials previously unobtainable by direct synthesis methods. This Review provides a perspective of the achievements in MOF research that have been made possible with SALE and examines the studies that have facilitated the understanding and broadened the scope of use of this invaluable synthetic tool.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.