Abstract

AbstractAn easy and efficient method for the separation of saturated and unsaturated fatty acid mono alkyl esters, prepared from animal fat, was developed. The most efficient separation was achieved by the use of solvents such as methanol and acetone at low temperatures. The dilution of the alkyl esters with 10 times the amount of solvent (10:1 v/w) and storage of the mixture for 4 h at −22 °C could be defined as optimum conditions. After filtration of the saturated fraction at the corresponding temperature very pure fractions were obtained. For fatty acid methyl esters deriving from tallow, with an initial content of saturated fatty acids of almost 50 %, a saturated ester fraction with only 5 % unsaturated fatty acids and an unsaturated ester fraction with about 9 % of saturated fatty acids could be obtained. The solvent easily could be recovered by distillation. In addition fatty acid ethyl, 1‐propyl, 2‐propyl, 1‐butyl, tert‐butyl and 3‐methyl‐1‐butyl esters were prepared and separated into saturated and unsaturated fractions. All fractions were analyzed according to the fatty acid compositions and showed similar or slightly worse results compared to the methyl esters. The cold filter plugging points of the unsaturated fractions were measured, showing the lowest value for the unsaturated methyl ester fraction at −26 °C. The fractionation with the use of solvents is an easy tool in order to obtain fatty acid alkyl esters with excellent cold temperature behavior out of animal fat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.