Abstract

As one kind of conducting polymer composite, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) has been widely used as an electrode for energy storage and conversion devices because of its optical transmittance, flexibility, and high electrical conductivity etc. Here, we prepared binding-free PEDOT:PSS fibers (PFs) electrodes with high capacitive performance for supercapacitors via a facile method followed by various solvent treatments. Dimethyl sulfoxide (DMSO)-treated electrodes displayed a better specific capacitance (Cs) of 202 F/g at 0.5 A/g with higher elongation at break, flexibility, and conductivity of 140.7 S/cm, compared to those of pristine PEDOT:PSS materials. More importantly, the DMSO-treated fibers possessed improved stability, which retained 105% of the initial Cs after 22 000 long cycles at 10 A/g. It is believed that the fabricated PFs will be promising organic electrodes for portable supercapacitors and other flexible electronic devices in the near future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call