Abstract

The Smoluchowski–Debye–Stokes–Einstein equation for the rate constant k2 of a bimolecular reaction between charged or polar species[Formula: see text]was used to evaluate effects of bulk solvent properties on reaction rates of solvated electrons with [Formula: see text] and [Formula: see text] in 2-butanol/water mixed solvents. To explain detailed effects it was necessary to consider more specific behavior of the solvent. Rate constants k2, activation energies E2, and pre-exponential factors A2 of these reactions vary with the composition of 2-butanol/water mixtures. The values of E2 were in general similar to activation energies of ionic conductance EΛ0 of the solutions, except for much higher values of E2 of [Formula: see text] in alcohol-rich solvents and of [Formula: see text] in pure water solvent. The solvent apparently participates chemically in the [Formula: see text] reaction, and the [Formula: see text] reaction is multistep. Rate constant and conductance measurements of thallium acetate solutions in 2-butanol containing zero and 10 mol% water were complicated by the formation of ion clusters larger than pairs. Key words: alcohol/water mixed solvents, ions, reaction kinetics, solvated kinetics, solvated electron, solvent effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.