Abstract

Schizophyllan is a triple helical β-1,3-D-glucan, and shows the cooperative order-disorder transition in the aqueous solution at the triple helix state. In this paper, the solvent stabilizing effects of two carboxylic acids, acetic acid and citric acid, on the cooperative order-disorder transition of aqueous schizophyllan solution were investigated from DSC and SEC-MALS measurements. The transition temperature (Tr) was shifted to higher temperature with increasing the molar fraction of carboxylic acid in the mixture (x). The transition enthalpy (ΔHr) was increased with increasing x. These solvent stabilizing effects indicate that these carboxylic acid molecules were selectively associated with the branched side chains of schizophyllan to stabilize the ordered state. The composition dependencies of Tr and ΔHr were analyzed by the linear cooperative transition theory to estimate the association parameters between the side chains and carboxylic acid. The theoretical parameters obtained were compared with those for the other active substances for the transition to discuss the molecular interactions between the triple helix and carboxylic acid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.