Abstract
Although numerous approaches were proposed for the nucleic acid (NA)-based SARS-CoV-2 detection, the nonideal NA desorption efficiency of conventional magnetic beads (MBs) limits their widespread application. In this study, we developed solvent-responsive MBs (called responsive MBs), which, in the presence of buffers, modulated the absorption and desorption capacities of NA by flipping the surface -COO-. Relative to other commercial MBs, responsive MBs exhibited similar absorption profiles and markedly enhanced desorption profiles. When applied for NA detection of complex samples, responsive MBs exhibited better performance of RNA detection than DNA, with obvious advantages in sensitivity. Specifically, the RNA and DNA desorption rates of commercial MBs were ∼85 and 82.5%, while those of responsive MBs were nearly 94 and 93.5%, respectively. Furthermore, responsive MBs exhibited remarkable extraction ability in a wide range of tissues and better performance of RNA extraction than DNA. When applied for SARS-CoV-2 detection, the responsive MBs along with the simulated digital RT-LAMP (a previously established apparatus) further improved detection efficiency, yielding a precise quantitative detection as low as 25 copies and an ultimate sensibility detection of 5 copies/mL. It was also successfully employed in numerous NA-based technologies such as polymerase chain reaction (PCR), sequencing, and so on.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.