Abstract

Solvent responsive magnets comprise a class of molecule-based materials where lattice solvent driven structural transformation leads to the switching of magnetic properties. Herein, we present a special type of magnet where single-crystal to single-crystal (SCSC) transformations within mononuclear DyIII compounds result in the switching of DyIII single-molecule magnets (SMMs). This structural transformation involves lattice solvents which leads to significant changes in the color and magnetic properties. Additionally, the relaxation dynamics of mononuclear DyIII compounds are perceptibly fine-tuned by the modification of β-diketonate ligands. The uniaxial magnetic anisotropies, magneto-structural correlations and the relaxation mechanism were investigated by magnetic studies and ab initio calculations. These experimental and theoretical studies indicate that compound 2 exhibits the best magnetic properties in compounds 1-4. The experimental observation is supported by the theoretical prediction of QTM time (τZeeQTM) as theτZeeQTM of 2 is remarkably longer than those of the other three compounds by an order of magnitude. This means that, compared with 1, 3, and 4, the magnetic relaxation of 2 is significantly slower. Meanwhile, 2 has the largest value of axial ESP (the axial electrostatic potential), which supports the smallest gXY value in these compounds, resulting in better SMM properties. The present results offer a systematic synthesis regulation to change the magnetization dynamics and further understand magneto-structural correlations for DyIII SMMs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.