Abstract

The experimental thermodynamic data for the dissolution of five simple hydrocarbon molecules in water were combined with the solute-solvent interaction energy from a computer simulation study to yield data on the enthalpy change of solvent reorganization. Similar data were generated for dissolving these same solute molecules in their respective neat solvents using the equilibrium vapor pressure and the heat of vaporization data for the pure liquid. The enthalpy and the free energy changes upon cavity formation were also estimated using the temperature dependence of the solute-solvent interaction energy. Both the enthalpy and T delta S for cavity formation rapidly increase with temperature in both solvent types, and the free energy of cavity formation can be reproduced accurately by the scaled particle theory over the entire temperature range in all cases. These results indicate that the characteristic structure formation around an inert solute molecule in water produces compensating changes in enthalpy and entropy, and that the hydrophobicity arises mainly from the difference in the excluded volume effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.