Abstract

Solvent programmable polymers (SPPs) were developed that can modulate their recognition properties by heating in different solvents. These highly cross-linked polymer gels were able to respond to differences in solvent polarity at elevated temperatures via rotation about a C(aryl)-N(imide) bond of a carboxylic acid monomer. When heated in polar solvents such as water, the number of solvent accessible carboxylic acids in the polymers increases. When heated in nonpolar solvents such as toluene, the number of solvent accessible carboxylic acids decreases. On cooling to rt, these changes are preserved and maintained even when the polymer is removed from the solvent imprinting environment. The solvent memory is due to the reestablishment of restricted rotation around that C(aryl)-N(imide) bond, which locks the carboxylic acid recognition groups into either a solvent accessible or inaccessible orientation. The solvent programmability was also shown to be reversible. The fidelity of the SPP switching process did not decrease after five cycles of heating in polar and nonpolar solvents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.