Abstract

A range of morphology-controlled hematite superstructures, including two-dimensional sheet assembly, microspheres with a vein-like network, hollow urchin with tapered nanorods, and flowers with porous branch-like structures, were obtained from different solvents via the solvothermal approach. The results showed that the variation of the solvent from protic to aprotic facilitated morphological modifications, with the solvent playing a key role in determining the overall architecture of the oxide particles under different polar conditions. A porous microsphere grown from water solvent delivered a reversible capacity of 880mAhg−1 over 60 cycles at 200mAg−1 with good rate stability. Here, the bicontinuous nanoporous structure, with well-developed mesoporosity in the microsphere, reduced the severity of volume changes during the cycling process and stabilized passivation layer growth. The hematite nanostructure grown from water/dimethylformamide solvent exhibited the highest photocurrent density of 190μA/cm−2 vs. Ag/AgCl, which was attributed to the rapid transport of charge carriers in the porous nanostructure. Thus, solvent-mediated synthesis can be used to prepare a range of hematite porous nanostructures for use as an anode in lithium-ion batteries and as a photoanode in photoelectrochemical cells, as well as for water splitting, gas sensors, and catalytic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.