Abstract

Rational regulation of the properties of photochromic materials is a challenging and meaningful work. In the present work, NDI-based complexes, namely, [Cd0.5(NDI)(HBDC)]·H2O (1) and a series of conformational isomers of {[Cd(NDI)0.5(BDC)]·MeCN}n (2), were synthesized by varying the solvent conditions (H2BDC = terephthalic acid, NDI = N,N'-bis(3-pyridylcarbonylhydrazine)-1,4,5,8-naphthalene diimide). Complex 1 exhibits a 0D mononuclear structure without photochromic behavior due to the bad conjugation of the naphthalene diimide moiety. The conformational isomers of complex 2 manifest a 3D network, showing ultra-fast photo-induced intermolecular electron transfer photochromic behavior under X-ray, UV, and visible light. However, they show different photochromic rates and coloring contrast upon photoirradiation, which originates from their difference in the distances of lone pair(COO)···π(NDI). This was realized via controlling the solvent ratio in the reaction system. In addition, compared to UV/X-ray light, 2 exhibits greater sensitivity to visible light and is an organic-inorganic hybrid material with photomodulated luminescence. Based on the excellent performance, complex 2 can be applied to filter paper, showing potential applications as an inkless printing medium and selective perception of ammonia and amine vapors in the solid state via different visual color changes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.