Abstract
Excited state proton transfer (ESPT) is thought to be responsible for the photostability of biological molecules, including DNA and proteins, and natural dyes such as indigo. However, the mechanistic role of the solvent interaction in driving ESPT is not well understood. Here, the electronic excited state deactivation dynamics of indigo carmine (InC) is mapped by visible pump-infrared probe and two-dimensional electronic-vibrational (2DEV) spectroscopy and complemented by electronic structure calculations. The observed dynamics reveal notable differences between InC in a protic solvent, D2O, and an aprotic solvent, deuterated dimethyl sulfoxide (dDMSO). Notably, an acceleration in the excited state decay is observed in D2O (<10 ps) compared to dDMSO (130 ps). Our data reveals clear evidence for ESPT in D2O accompanied by a significant change in dipole moment, which is found not to occur in dDMSO. We conclude that the ability of protic solvents to form intermolecular H-bonds with InC enables ESPT, which facilitates a rapid nonradiative S1 → S0 transition via the monoenol intermediate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.