Abstract
A detailed knowledge of structural and energetic aspects of water-nucleic acid interactions is essential for understanding the role of solvent in stabilizing the various helical forms of nucleic acids. In this study, computer simulation techniques have been used to predict structural properties of solvent networks in small nucleic acid crystal hydrates. A detailed comparison of predicted and experimental results on the structure of the solvent networks is presented and includes an analysis of both the local environment and hydrogen bond pattern of each water molecule. A correlation between the environment of each unique water molecule and its energetic properties (such a dipole moment and binding energy) is seen. As in the previous studies on small amino acid hydrate crystals, non-pair additive (cooperative) effects are found to be non-negligible. It is concluded that the potential functions used in this initial study lead to simulated solvent networks in reasonable agreement with experimental data. Thus, it is now feasible to use them in studies of hydration of larger helical fragments of nucleic acids of more direct biological interest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.