Abstract

High-resolution Shpol'skii spectra (recorded at 10 K in n-octane) of 3-hydroxychromone (3HC) substituted at the 2-position with a furan (3HC-F), a benzofuran (3HC-BF) or a naphthofuran group (3HC-NF) are presented. Being close analogues of 3-hydroxyflavone (3HF), these compounds can undergo excited-state intramolecular proton transfer (ESIPT). Luminescence can occur from the normal N* state (blue) or from the tautomeric T* state (green). Whether blue or green emission is observed is strongly dependent on hydrogen-bonding interactions with the environment. For all three chromones studied, high-resolution emission spectra in the green region (T*→T) were obtained in pure n-octane, showing four sites with distinct emission bands and detailed vibrational structures, whereas no blue emission was detected. Contrary to the spectra published for 3HF, the emission lines were very narrow (line-broadening effects beyond detection) which implies that the ESIPT rate constants are >10 12 s −1, at least 25 times lower than for 3HF. In order to study the effects of hydrogen-bonding solvents, four isomers of octanol (1-, 2-, 3- and 4-octanol) were added, forming 1:1 complexes with the 3HC derivatives. For all the combinations considered both blue and additional green emission was observed and in some cases narrow-banded spectra were obtained, mostly in the green. Only for the 3HC-NF/2-octanol complex, narrow-banded emission was found both in the blue and in the green region. It is demonstrated that these emissions come from different configurations of the complex. Possible structures for the two complex species are proposed, supported by semi-empirical calculations on complex formation enthalpies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call