Abstract

A series of lead(II) complexes incorporating benzoate derivative ligands was prepared: [Pb(2MeOBz)2]n (1), [Pb(2MeOBz)2(H2O)]n (2), [Pb2(1,4Bzdiox)4(DMSO)]n (3), [Pb(1,4Bzdiox)2(H2O)]n (4), [Pb(Pip)2(H2O)]n (5), and [Pb(Ac)(Pip)2(MeOH)]n (6) (2MeOBz: 2-methoxybenzoate; 1,4Bzdiox: 1,4-benzodioxan-5-carboxylate; DMSO: dimethylsulfoxide; Ac: acetate; Pip: piperonylate; MeOH: methanol). All compounds were characterized via elemental analysis, ATR-FTIR spectroscopy, and powder XRD. In addition, the crystal structures of some compounds were elucidated. Compounds 1 and 2, involving 2-methoxybenzoate, were closely related, only differing in the presence of one extra aqua ligand found for the latter. However, this implies key changes in the studied properties, e.g., 2 shows solid-state luminescence that displays a different color as a function of the crystal orientation, while 1 does not. The crystal structure of 2 revealed a 1D coordination polymer. A similar relationship was found between compounds 3 and 4, incorporating 1,4-benzodioxan-5-carboxylate. In this pair, only 4, with aqua ligands, displayed a greenish-yellow-color solid-state luminescence. Furthermore, two new lead(II) piperonylate complexes, 5 and 6, were obtained from the reaction between lead(II) acetate and piperonylic acid. In water, all acetate ligands in the metal precursor were displaced and [Pb(Pip)2(H2O)]n (5) was isolated, while in methanol, a mixed acetate–piperonylate complex, [Pb(Ac)(Pip)2(MeOH)]n (6), was precipitated. Considering only conventional Pb-O bonds, the crystal structure of 6 was described as a 1D coordination polymer, although, additionally, the chains were associated via tetrel bonds, defining an extended 2D architecture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.