Abstract
Previous reports in the literature describe that the crystallization of hexaphenyl carbodiphosphorane (CDPPh) from a variety of solvents gives a "bent" geometry for the P-C-P moiety as the solid-state molecular structure. However, a linear structure is observed when CDPPh is crystallized from benzene. Here, we report detailed spectroscopic and theoretical studies on the linear and bent structures. X-ray powder diffraction examinations show a phase transition of linear CDPPh upon the loss of co-crystallized benzene molecules, which is accompanied by the bending of the P-C-P unit. Studies on the linear and bent structures (i.e., X-ray powder diffraction, solid-state NMR, UV-vis spectroscopy, and IR spectroscopy) show significant differences in their properties. Investigations of the solid-state structures with density functional theory-based methods (PBE-D3) point toward subtle dispersion effects being responsible for this solvent-induced bond-bending isomerism in CDPPh.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.