Abstract

Conventional processes for depositing thin films of conjugated polymers are restricted to those based on vapor, liquid, and solution-phase precursors. Each of these methods bear some limitations. For example, low-bandgap polymers with alternating donor-acceptor structures cannot be deposited from the vapor phase, and solution-phase deposition is always subject to issues related to the incompatibility of the substrate with the solvent. Here, a technique to enable deposition of large-area, ultra-thin films (≈20 nm or more), which are transferred from the surface of water, is demonstrated. From the water, these pre-solidified films can then be transferred to a desired substrate, circumventing limitations such as solvent orthogonality. The quality of these films is characterized by a variety of imaging and electrochemical measurements. Mechanical toughness is identified as a limiting property of polymer compatibility, along with some strategies to address this limitation. As a demonstration, the films are used as the hole-transport layer in perovskite solar cells, in which their performance is shown to be comparable to controls formed byspin-coating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.