Abstract

Adsorption is an efficient technology for removing phosphorus from wastewater to control eutrophication. In this work, MgO-modified biochars were synthesized by a solvent-free ball milling method and used to remove phosphorus. The MgO-modified biochars had specific surface areas 20.50–212.65 m2 g−1 and pore volume 0.024–0.567 cm3 g−1. The as-prepared 2MgO/BC-450-0.5 had phosphorus adsorption capacities of 171.54 mg g−1 at 25 °C and could remove 100% of phosphorus from livestock wastewater containing 39.51 mg L−1 phosphorus. The kinetic and isotherms studied show that the pseudo-second-order model (R2 = 0.999) and Langmuir models (R2 = 0.982) could describe the adoption process well. The thermodynamic analysis indicated that the adsorption of phosphorus on the MgO-modified biochars adsorbent was spontaneous and endothermic. The effect of pH, FTIR spectra and XPS spectra studies indicated that the phosphorus adsorption includes a protonation process, electrostatic attraction and precipitation process. This study provides a new strategy for biochar modification via a facile mechanochemical method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call