Abstract
Nontoxic alternatives to lead halide perovskites are highly sought after for applications in optoelectronics. Blue-luminescent materials are especially demanded as they could be used to prepare white light-emitting diodes, with important potential applications in lighting systems. However, wide band gap blue emitters with high photoluminescence quantum yields (PLQYs) are typically more difficult to obtain as compared to green- or red-emitting ones. Here, we prepared two series of inorganic cesium copper halides, with the general formulas Cs3Cu2X5 and CsCu2X3 (X = Cl, Br, I, and mixtures thereof) by dry mechanochemical synthesis at room temperature. X-ray diffraction demonstrates quantitative conversion of binary precursors into the desired ternary structures and good halide mixing in single-phase compounds. We identified Cs3Cu2I5 as the most promising material as it maintains blue luminescence centered at 442 nm with a high PLQY (>40%) after several days in air (Cs3Cu2Cl5 shows significantly higher PLQY, ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.