Abstract

Transition metal sulfides (TMSs) have a wide range of applications owing to their intriguing properties. Significant efforts have been devoted to nanostructuring TMSs to enhance their properties and performance, still there is a high need in general synthesis of TMS nanostructures. Herein, for the first time, a simple solvent free reactive nanocasting approach that integrates solid precursor loading, in-situ sulfuration and carbonization into a single heating step is developed for the universal synthesis of ordered mesoporous TMS@N-doped carbon composites (denoted as OM-TMS@NCs) with methionine (Met) and metal chlorides as the precursors and the mesoporous silica (SBA-15) as the hard template. A series of OM-TMS@NCs with a hexagonal mesostructure, ultra-high surface areas (430–754 m2·g−1), large pore volumes (0.85–1.32 cm3·g−1), and unique TMS stoichiometries, including MoS2, Fe7S8, Co9S8, NiS, Cu7S4 and ZnS, are obtained. Two distinct structure configurations, namely, highly dispersed ultrathin TMS nanosheets within NCs and TMS@NC co-nanowire arrays, can be obtained depending on different metals. The structure evolution of the OM-TMS@NCs over the solvent-free nanocasting process is studied in detail for a deep understanding of the synthesis. As demonstrations, these materials are promising for electrocatalytic hydrogen evolution reaction and lithium ion storage with high performances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call