Abstract

Saccharide-fatty acid esters – biodegradable, biocompatible and non-ionic bio-based surfactants derived from inexpensive renewable agricultural sources, utilized in foods, cosmetics and pharmaceuticals, have been synthesized under solvent-free conditions using a closed-loop system operated under continuous recirculation consisting of a reservoir, a peristaltic pump and a packed-bed bioreactor containing immobilized Rhizomucor miehei lipase (RML). Metastable suspensions of saccharide crystals were formed through continuous stirring in the reservoir with an in-line filter of 180 µm normal size preventing larger crystals from clogging the tubing. The initial reaction medium consisted of oleic acid/fructose-oleic acid esters 95/5 w/w, with saccharide added periodically to the reservoir to replace consumed acyl acceptor substrate. The liquid-phase water concentration was retained at a previously determined optimal value of ∼0.4 wt % through free evaporation of the co-product, water, in the reservoir during the initial phase of the reaction, and N2(g) bubbling and vacuum pressure after 40 h of reaction. After 200 h, the reaction mixture contained 84 wt % ester, of which 90% of the ester consisted of monoester. Equivalently, the productivity was 0.195 mmolEster h− 1 gRML− 1. The resultant technical grade product can potentially be used directly, without further purification. A mathematical model based on mass balances and a zeroth-order kinetic model was successfully developed to predict the concentration of substrates (oleic acid and saccharide) in the reservoir during the time course of reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.