Abstract

The halide perovskite X-ray detector can meet the urgent needs of low-dose medical imaging by X-rays. However, there is still a pressing challenge in lacking robust methods for large-scale fabrication of high-quality perovskite films with tunable thickness. Here we report a laminated fabrication of polycrystalline MAPbI3 by using solvent-free liquid perovskite molten-salt (PMS), that offers reduced toxic issue, scalable fabrication, and highly tunability in film thickness. Nylon membrane was chosen as a scaffold for the infiltration of PMS, which simultaneously acts as a physical barrier to suppress the ionic migration in the MAPbI3-nylon composite (denoted as MAPbI3-LLP). The enhanced material properties result in good stability and high performance of X-ray detectors that show low detection limit and high sensitivity. Additionally, single gamma-ray photon detection was realized by MAPbI3-LLP detectors. The promising performance characteristics of such polycrystalline detectors can accelerate the adoption of polycrystalline perovskites in X-ray imaging and gamma-ray detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.