Abstract

TiO2 nanoparticles exhibiting large surface area were synthesized by the hydrothermal treatment of the water soluble titanium(IV) bis(ammoniumlactato) dihydroxide (TALH) complex in the presence of aqueous ammonia. The obtained powders were characterized by X-ray diffraction, scanning electron microscopy, diffuse reflectance spectroscopy, and nitrogen adsorption. Their photocatalytic activities were assessed by the photocatalytic hydrogen evolution from aqueous EDTA solutions. The effects of Pt- and photocatalyst loading, EDTA concentration, light intensity, pH, and temperature on the H2 evolution rate were studied in detail. The highest reaction rate was obtained for the TiO2 photocatalyst loaded with 0.4–0.5wt.% Pt at pH 5 and this was found to be 18 and 34% higher than that of TiO2 P25 and TiO2 UV100, respectively. The reaction rate increased substantially with increasing the temperature from 5°C to 45°C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.