Abstract

The use of ionic liquids (ILs) as solvents for extraction of metals is a promising development in separation science and technology; yet, the viscosities of ionic liquids (ILs) can be so high that long reaction times are required to reach the equilibrium state. An aqueous biphasic system (ABS) consisting of the nonfluorinated carboxyl-functionalized phosphonium IL [P444C1COOH]Cl and a 16 wt % NaCl solution is described. The IL-rich phase of the aqueous biphasic system has a very low viscosity, in comparison to the pure IL [P444C1COOH]Cl. This system has excellent extraction properties for scandium. Different extraction parameters were investigated, including contact time and metal loading. The influence of the pH on the solubility of the IL cation in the water-rich phase was determined via quantitative 1H NMR. The stripping of scandium with oxalic acid from the IL phase was also investigated. A plausible extraction mechanism is proposed where three IL cations are deprotonated to form zwitterionic compound...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.