Abstract
A procedure was developed that allows precise determination of molybdenum isotope abundances in natural samples. Purification of molybdenum was first achieved by solvent extraction using di(2-ethylhexyl) phosphate. Further separation of molybdenum from isobar nuclides was obtained by ion chromatography using AG1-X8 strongly basic anion exchanger. Finally, molybdenum isotopic composition was measured using a multiple collector inductively coupled plasma hexapole mass spectrometer. The abundances of molybdenum isotopes 92, 94, 95, 96, 97, 98, and 100 are 14.8428(510), 9.2498(157), 15.9303(133), 16.6787(37), 9.5534(83), 24.1346(394), and 9.6104(312) respectively, resulting in an atomic mass of 95.9304(45). After internal normalization for mass fractionation, no variation of the molybdenum isotopic composition is observed among terrestrial samples within a relative precision on the order of 0.00001-0.0001. This demonstrates the reliability of the method, which can be applied to searching for possible isotopic anomalies and mass fractionation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.