Abstract

ABSTRACTSolvent extraction and separation of rare earths (REs: La ~ Lu, plus Y and Sc) by a novel synthesized extractant, (2-ethylhexylamino)methyl phosphonic acid mono-2-ethylhexyl ester (HEHAMP, abbreviated as H2A2), were investigated in chloride medium. The favorable separation factors (SFs) between adjacent heavy REs suggested that HEHAMP has a better separation performance than P507. The extracted complex of trivalent REs was determined to be REClH2A4 by the slope analysis method. Thermodynamic parameters (ΔH, ΔG, and ΔS) of Lu were calculated as 7.47 kJ mol−1, −6.05 kJ mol−1, and 45.4 J mol−1 K−1 at 298.15 K, respectively, which indicate that the extraction reaction of Lu is an endothermic process. The loading capacity of 30% (v/v) HEHAMP toward Lu(III), Yb(III), and Y(III) was about 15.17 g Lu2O3/L, 14.46 g Yb2O3/L, and 12.64 g Y2O3/L, respectively. HCl is the most efficient stripping acid, and 92% of the loaded Yb(III) can be stripped by one-stage stripping with 2 mol/L HCl.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.