Abstract

Organic-inorganic halide perovskite solar cells (PSCs) have shown a significant growth in power conversion efficiencies (PCEs) during last decade. Progress in device architecture and high-quality perovskite film fabrication has led to an incredible efficiency over 25% in close to a decade. Developments in solution-based thin film deposition techniques for perovskite layer preparation in PSCs provide low cost and ease of process for their manufacturing, making them a potential contender in future solar energy harvesting technologies. From small area single solar cells to large area perovskite solar modules, solvents play crucial roles in thin film quality and therefore, the device performance and stability. A comprehensive overview of solvent engineering toward achieving the highest qualities for perovskite light absorbing layers with various compositions and based on different fabrication processes is provided in this review. The mechanisms indicating the essential roles a solvent, or a solvent mixture can play to improve the crystallinity, uniformity, coverage and surface roughness of the perovskite films, are discussed. Finally, the role of solvent engineering in transferring from small area laboratory scale PSC fabrication to large area perovskite film deposition processes is explored.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.