Abstract

Solvent-dependent host-guest chemistry and favoring of otherwise disfavored conformations of large guests has been achieved with an adaptive, self-assembled Fe(II)4L4 coordination cage. Depending on the counterion, this face-capped tetrahedral capsule is soluble either in water or in acetonitrile and shows a solvent-dependent preference for encapsulation of certain classes of guest molecules. Quantitative binding studies were undertaken, revealing that both aromatic and aliphatic guests bind in water, whereas only aliphatic guests bind in acetonitrile. The flexibility of its subcomponent building blocks allows this cage to expand or contract upon guest binding, as studied by VT-NMR, thereby ensuring strong binding of both small and large guests. Upon encapsulation, large guest molecules can adopt conformations which are not thermodynamically favored in the free state. In addition, the chirotopic inner phase of the cage renders enantiotopic guest proton signals diastereotopic in specific cases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call