Abstract

Kuntz and Kauzmann have argued that dehydrating a protein results in conformational changes. In contrast, Rupleyet al. have developed a hydration model which involves no significant change in conformation; the onset of enzyme activity in hen egg-white lysozyme at hydration values of about 0.2 g water/g protein they ascribe rather to a solvation effect. Using a direct difference infra-red technique we can follow specific hydration events as water is added to a dry protein. Conformational studies of lysozyme using laser Raman spectroscopy indicate changes in conformation with hydration that are complete just before measurable activity is found. Parallel nuclear magnetic resonance measurements of exchangeability of the main chain amide hydrogens, as a function of hydration from near dryness, suggest a hydration-related increase in conformational flexibility which occurs before-and is probably necessary for-the Raman-detected conformational changes. Very recent inelastic neutron scattering measurements provides direct evidence of a flexibility change induced by hydration, which is apparently necessary before the enzyme can achieve adequate flexibility for it to begin to function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.