Abstract
The captodative effect postulates that radicals substituted with both electron donating and accepting groups enjoy a special enhanced stabilization, a model given theoretical support by simple MO and resonance arguments. A key prediction from theory is that captodative stabilization of radicals is larger in polar solvents than in nonpolar solvents or the gas phase, which can be viewed in the resonance model as solvent stabilization of charge-separated resonance forms. Yet, several experimental studies have failed to observe a solvent effect on radical stability, casting doubt on key aspects of the captodative effect. Here, we examine in detail the effect of solvent on the stability of structurally related captodative aryl dicyanomethyl radicals. An attractive feature of these radicals is that they exist as stable steady state populations of radicals in equilibrium with their dimers, allowing us to directly characterize from experiment their thermodynamic stabilities and spin delocalization in solvents of varying polarity. In contrast to the prior studies, we find that captodative radicals are indeed stabilized by polar solvents, as measured by a shift in the radical-dimer association constants by up to 100-fold toward the radical upon going from nonpolar toluene to more polar DMF. Moreover, in polar solvents, the spin is shifted onto the donor substituent and away from the benzylic carbon. Within the resonance model, these results can be explained by the increased contributions of the zwitterionic resonance structures to the overall hybrid. These results provide experimental support to a key prediction from theory that had previously been dismissed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.