Abstract

The solvent affects the morphology of ionomers, agglomeration structure, adsorption of ionomers on carbon or catalyst particles, and rheology in the proton exchange membrane fuel cell (PEMFC) ink, which are all related to the microstructure of catalyst inks. We investigated the link between the morphology of the ionomers or the fractal dimension (df) of graphitized carbon (GC) dispersion and the microstructure of the catalyst ink by solvent to change the morphology of the ionomers or df of GC dispersion. The nuclear magnetic resonance results showed relatively low mobility of the ionomer in ethylene glycol (EG), resulting in a weak interaction between the ionomer and EG. GC in water, EG, and n-propanol (nPA) form transition gels with a network structure by a diffusion-limited aggregation mechanism, with df of 1.76 ± 0.03, 1.95 ± 0.04, and 2.01 ± 0.06, respectively. Moreover, the addition of ionomers reduces the viscosity of inks due to the introduction of steric hindrance and an increase in electrostatic repulsion, transforming the ink from shear-thinning to Newtonian fluids. Further, the interaction between ionomer and particles in GC and graphitized-carbon-supported platinum (Pt/GC) inks is solvent-dependent, and nPA is more favorable than water and EG for ionomer adsorption on GC. These findings provide valuable insight into the internal interactions and microstructure of PEMFC catalyst inks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.