Abstract

An application of the theory recently developed to calculate SCF static and dynamic (hyper)polarizabilities of molecular solutes within the framework of the polarizable continuum model is presented here. The specific system under analysis is given by the acetonitrile molecule both in vacuo and in two different dilute solutions, water and benzene. The numerical results reported in the present paper are focused on an evaluation of the main changes produced by the presence of a solvent on the static and dynamic polarizability, α, and first and second hyperpolarizabilities, β and ρ, with respect to the corresponding quantities in the gas phase. The limits of the present calculations, and the prospects for their refinement, are discussed with a view to giving a preliminary hint and a first tool for future reliable prediction of the behavior of this kind of response function when the molecule is perturbed by the presence of a surrounding medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.