Abstract

BackgroundThe present investigation evaluated 4 different solvent compositions for their relative capacity to extract total phenolic and total flavonoid (TF) components of the leaves, trunks, and stems of Bucida buceras L. (Combretaceae), and the stems of Phoradendron californicum (Viscaceae), plus mesquite and oak species endemic to the Southwestern United States, northern Mexico, and tropical regions of Central and South America, as well as to profile the composition of these plant materials and to measure their antioxidant capacity.MethodsThe total phenolic content of plant material used in the present investigation was measured using the Folin–Ciocalteau assay. Total flavonoids were assayed by AlCl3 and 2,4-dinitrophenylhydrazin colorimetry. Nitroblue tetrazolium was utilized for scavenging of superoxide anion, and in vitro antioxidant activity was evaluated using the 2, 2-diphenyl-1-picrylhydrazyl and Ferric Reducing/Antioxidant Power assays.ResultsPhytochemical screening of each plant extract evaluated revealed the following major results: (1) No evidence of alkaloids for each of the extraction phases tested was detected in the hexanic, ethanolic, or aqueous phases of Bucida buceras and Phoradendron californicum (oak and mesquite); (2) Analysis of the hexane phase of B. buceras and P. californicum (mesquite) extracts revealed the presence of carotenes, triterpenes/steroids, and lactonic groups; (3) Analysis of the ethanol and aqueous extraction phases for both plants revealed the presence of a diverse range of compounds, including tripterpenes/steroids, lactonics groups, saponins, phenols/tannins, amines and/or amino acids, and flavonoids/anthocyanins; and (4) The highest total phenolic and flavonoid content were observed in P. californicum (oak): 523.886 ± 51.457 µg GAE/mg extract and 409.651 ± 23.091 µg/mg of extract for methanol and aqueous fractions, respectively. The highest flavonoid content was 237.273 ± 21.250 µg PNE/mg extract in the acetone extract of Bucida buceras stems; while the flavonol content (260.685 ± 23.031 µg CE/mg extract) was higher in the ethanol extract of P. californicum (oak). The acetone extract of B. buceras trunk extract showed the highest levels of DPPH radical-scavenging activity (IC50 = 4.136 ± 0.446 µg/mL) and reducing power (4928.392 ± 281.427 µM AAE/mg extract). The highest superoxide radical scavenging activity (IC50) was 55.249 ± 9.829 µg/mL, observed in acetone extracts of B. buceras leaves.ConclusionsThe results of the present investigation demonstrated the effects of extraction solvent on phenolic and flavonoid content yield—and antioxidant activities by Bucida buceras and Phoradendron californicum. The present investigation further revealed that Bucida buceras exhibited optimal antioxidant capacity when acetone was used as extraction solvent; and the highest yield of phenols and flavonoids were obtained from the P. californicum oak, using methanol and aqueous solvents, respectively.

Highlights

  • The present investigation evaluated 4 different solvent compositions for their relative capacity to extract total phenolic and total flavonoid (TF) components of the leaves, trunks, and stems of Bucida buceras L. (Com‐ bretaceae), and the stems of Phoradendron californicum (Viscaceae), plus mesquite and oak species endemic to the Southwestern United States, northern Mexico, and tropical regions of Central and South America, as well as to profile the composition of these plant materials and to measure their antioxidant capacity

  • The results of the present investigation demonstrated the effects of extraction solvent on phenolic and flavonoid content yield—and antioxidant activities by Bucida buceras and Phoradendron californicum

  • The present investigation further revealed that Bucida buceras exhibited optimal antioxidant capacity when acetone was used as extraction solvent; and the highest yield of phenols and flavonoids were obtained from the P. californicum oak, using methanol and aqueous solvents, respectively

Read more

Summary

Introduction

The present investigation evaluated 4 different solvent compositions for their relative capacity to extract total phenolic and total flavonoid (TF) components of the leaves, trunks, and stems of Bucida buceras L. (Com‐ bretaceae), and the stems of Phoradendron californicum (Viscaceae), plus mesquite and oak species endemic to the Southwestern United States, northern Mexico, and tropical regions of Central and South America, as well as to profile the composition of these plant materials and to measure their antioxidant capacity. Environmental pollutants, including radiation, chemicals, and dietary toxicants, along with physical trauma, cause dysregulation of immune activity, and may alter gene expression to induce expression of abnormal proteins. Antioxidants are important compounds, which protect organisms from damage caused by free radical-induced oxidative stress [3]. Many plants respond to environmental stressors by producing antioxidants such as polyphenols. These absorb and neutralize free radicals, quenching singlet and triplet oxygen, or inducing expression of peroxides and other toxic metabolites [6, 7]. The medicinal value of plants is related to their phytochemical component content and secondary metabolites, including: phenolic compounds, flavonoids, alkaloids, tannins, and other stress gene response products [8, 9]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call