Abstract

The solution-phase adsorption of solutes on solid surfaces is important in a number of applications that are currently being researched. However, most theoretical approaches describing this phenomenon fall short of accurately describing the solution environment. Herein, we use classical molecular dynamics simulations based on an accurate many-body force field to quantify vacuum and solution-phase (ethylene glycol) adsorption free energies of polyvinylpyrrolidone (PVP) oligomers on Ag surfaces—a system studied experimentally for solution-phase nanocrystal growth. We find a favorable free-energy change when PVP adsorbs to Ag surfaces in the presence of solvent. However, the binding free energy for a PVP molecule in solution is significantly smaller than that for a PVP molecule in vacuum. In vacuum, the adsorbates lose considerable entropy upon adsorption to a solid surface because of a loss in their configurational degrees of freedom. In solution, adsorption entropies are a result of a solvent–solute exchan...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.