Abstract

We present a real-time time-dependent density functional theory (RT-TDDFT) investigation of exciton dynamics in a C60 derivative, including solvent effects in the real-time time-dependent polarizable continuum model (RT-TDPCM). Dynamical simulations are carried out to gauge the ability of solvents to enhance ligand-to-fullerene charge transfer following photoexcitation. Solvent stabilization of charge transfer states and solute-solvent interactions lead to nonintuitive changes in electron-hole dynamics. An amplification factor of 1.5 in the molecular dipole oscillation, a measure of charge transfer, is achieved by inclusion of a time-dependent solvent environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.