Abstract

Resonance Raman spectra and cross sections of a “push−pull” chromophore containing a julolidine donor and a thiobarbituric acid acceptor have been measured in dilute solution in five solvents having a wide range of polarities (cyclohexane, 1,4-dioxane, dichloromethane, acetonitrile, and methanol) at excitation wavelengths spanning the strong visible charge-transfer absorption band. The absolute Raman excitation profiles and absorption spectra are simulated using time-dependent wave packet propagation techniques to determine the excited-state geometry changes along the ∼30 Raman-active vibrations as well as the solvent reorganization energies. Several vibrational modes undergo significant (5−15 cm-1) frequency changes as the solvent is varied, signaling solvent polarity effects on the ground-state electronic structure. The excited-state geometry changes are solvent dependent for some vibrational modes but not for others. The total vibrational reorganization energy decreases, and the solvent reorganization ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call