Abstract
Solvent effects on relaxation dynamics of a keto-carotenoid, siphonaxanthin, were investigated by means of the femtosecond time-resolved fluorescence spectroscopy. After excitation to the S2 state of siphonaxanthin, the S2-->1(n, pi*) internal conversion occurred with a time constant of 30-35 fs, followed by the 1(n, pi*)-->S1 internal conversion in 180-200 fs. Solvent dependence of the internal conversions was small, however intensities of the S1 fluorescence with its lifetime of longer than 10 ps were enhanced in methanol. These were explained by displacement of the potential surfaces and interaction through the hydrogen-bond between the C=O group of siphonaxanthin and solvents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.