Abstract

Electrostatic interaction of the solvent with the solute and fluctuations of the solvent configurations may make excitation energies of the solute different from those in the gas phase. These effects may dominate photoinduced or chemical reaction dynamics in solution systems and can be observed as shifts or broadening of peaks in absorption spectra. In this work, the nitrogen K-edge X-ray absorption spectra were measured for pyridazine in the gas phase and in aqueous solution. The ultraviolet and X-ray absorption spectra of pyridazine in aqueous solution, as well as those in the gas phase, were then calculated with models based on the algebraic-diagrammatic construction through second order [ADC(2)] with the resolution-of-identity (RI) approximation and compared with the spectra obtained in experiments. For aqueous solution, explicit local solvation structures were extracted from an ab initio molecular dynamics (AIMD) trajectory of pyridazine in bulk water, and RI-ADC(2) was combined with the conductor-like screening model (COSMO). The experimental absorption spectra of pyridazine in aqueous solution were reproduced with good accuracy by theoretical treatment of an ensemble containing the explicit local solvation structures of pyridazine with relevant water molecules combined with the COSMO solvation model of water for long-range solvation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call