Abstract

The dynamics of solvent reorganization following charge transfer at the interface between two immiscible liquids, one polar and the other non-polar are investigated by molecular dynamics. Both charge separation and charge recombination processes in two different orientations at the surface are considered and are compared with the same processes in the bulk polar solvent. The relaxation at the surface is significantly slower than in the bulk, in contrast to predictions of continuum models. The linear response approximation works reasonably well in the bulk but fails at the interface. The Langevin model is in poor agreement with the exact equilibrium correlations, especially at short time, but can qualitatively account for the overall rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.