Abstract

The photoreceptor protein cryptochrome is thought to host, upon light absorption, a radical pair that is sensitive to very weak magnetic fields, endowing migratory birds with a magnetic compass sense. The molecular mechanism that leads to formation of a stabilized, magnetic field sensitive radical pair has despite various theoretical and experimental efforts not been unambiguously identified yet. We challenge this unambiguity through a unique quantum mechanical molecular dynamics approach where we perform electron transfer dynamics simulations taking into account the motion of the protein upon the electron transfer. This approach allows us to follow the time evolution of the electron transfer in an unbiased fashion and to reveal the molecular driving force that ensures fast electron transfer in cryptochrome guaranteeing formation of a persistent radical pair suitable for magnetoreception. We argue that this unraveled molecular mechanism is a general principle inherent to all proteins of the cryptochrome/photolyase family and that cryptochromes are, therefore, tailored to potentially function as efficient chemical magnetoreceptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.