Abstract

In this article, a mathematical model is proposed for predicting solvent self-diffusion coefficients in amorphous glassy polymers based on free volume theory. The basis of this new model involves consideration of the plasticization effects induced by small molecular solvents to correctly estimate the hole-free volume variation above and below the glass-transition temperature. Solvent mutual-diffusion coefficients are calculated using free volume parameters determined as in the original theory. Only one parameter, which can be predicted by thermodynamic theory, is introduced to express the plasticization effect. Thus, this model permits the prediction of diffusion coefficients without adjustable parameters. Comparison of the values calculated by this new model with the present experimental data, including benzene, toluene, ethyl benzene, methyl acetate, and methyl ethyl ketone (MEK) in polystyrene (PS) and poly(methyl methacrylate) (PMMA), has been performed, and the results show good agreement between the predicted and measured values. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 846–856, 2000

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.