Abstract
The electronic circular dichroism (ECD) spectra of naproxen enantiomers were studied as a function of solvents using experimental (circular dichroism) and theoretical (time-dependent density functional theory) approaches. The (R)- and (S)-naproxen enantiomers presented an unusual inversion in their ECD signals in the presence of ethanol and water when compared with polar aprotic solvents such as acetonitrile. From a practical point of view, these findings deserve great attention because these solvents are widely used for high-performance liquid chromatography analysis in quality control of chiral pharmaceutical drugs. This is particularly relevant to naproxen because the (S)-naproxen has anti-inflammatory properties, whereas (R)-naproxen is hepatotoxic. A time-dependent density functional theory computer simulation was conducted to investigate the signal inversion using the solvation model based on density, a reparameterization of polarized continuum model. Electronic circular dichroism signals of conformers were calculated by computer simulation and their contribution to the combined spectra obtained according to Boltzmann weighting. It was found that the experimentally observed ECD signal inversion can be associated with the minor or major contribution of different conformers of naproxen.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.